MINERALS OF SODIUM IN THE EARTH'S TRANSITION ZONE AND LOWER MANTLE: EVIDENCE FROM EXPERIMENTS AND NATURAL DATA
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Mg-silicates, such as majorite, wadsleyite, ringwoodite, akimotoite and bridgmanite are considered very important mineralogical constituents of the transition zone and the uppermost lower mantle. Some of these phases may incorporate Na, although the number of probable mineral hosts for sodium is limited to majorite (Na2MgSi5O12 end-member; Dymshits et al. 2010; Bindi et al. 2011), ringwoodite and bridgmanite (Bindi et al. 2016), hexagonal new aluminous (NAL) and Ca-ferrite-type (CF) phases with the composition of NaAlSiO4–MgAl2O4 (Dai et al. 2013). Several synthetic Na-rich Mg-silicates have been also reported as mineralogically possible phases in the deep geospheres. Among them are: Na1.78(Mg1.89Al0.13)Si2.02O7, Na1.16K0.01(Mg1.89Al0.14)Si2.02O7H0.65 (anhydrous and hydrous sodic phase X, known as NMS phase; Yang et al. 2001), Na2Mg4+xFe3+2–2xSi6+xO20, (K,Na)0.9(Mg,Fe)2(Mg,Fe,Al,Si)6O12, Na2Mg2Si6O15 and solid solutions of Na(MgxSixAl1–2x)Si2O6 (0 ≤ x ≤ 0.5) composition (see Litvin et al. 1998 and a complete review in Yang et al. 2009).
Although the concentration of alkalis in the Earth’s transition zone and lower mantle is low and Na remains incompatible in most of the high-pressure solid phases, it is expected that some mantle phases could act as important hosts for Na, and perhaps K, in the deep transition zone and lower mantle. As it was shown before, Na-bearing majoritic garnet (up to 1.5 wt % Na2O; Bobrov et al. 2008), Na-rich ringwoodite (up to 4.4 wt % Na2O; Bindi et al. 2016) and bridgmanite (up to 1.5 wt % Na2O; Bindi et al. 2016) could crystallize from Na-rich carbonated melts produced by partial melting upon the crust–mantle interaction. In the model of Walter et al. (2008), melting occurs as slabs descend and stagnate in the transition zone, and heat up to the carbonated eclogite solidus where they release a low-degree melt. Such low-degree carbonatitic melts from eclogite are expected to be mobile and rich in alkali, and so may act as effective metasomatizing agents. The presence of such melts in the deep mantle is supported by inclusions of Na-carbonates [nyerereite (Na,K)2Ca(CO3)2 and eitelite Na2Mg(CO3)2] in lower mantle diamonds (Kaminsky et al. 2016) and incorporation of sodium in major mantle silicates, such as majoritic garnet and bridgmanite. In contrast, proper Na–Mg silicates have not been registered as inclusions in diamonds or in mantle rocks, although they were obtained as products of experiments in many Na-rich model systems. This is explained by the fact that all natural lithologies are characterized by an excess of Al with respect to Na. However, the finding of an inclusion in diamond with the composition (Na0.16Mg0.84)(Mg0.92Si0.08)Si2O6 in a Chinese kimberlite (Wang and Sueno, 1996) suggests that some local areas of the Earth’s deep mantle previously involved in the mantle–crust interaction may be significantly enriched in Na. In this relation, study of Na-rich Mg-silicates will increase our knowledge on the composition and properties of the deep mantle. Thus, the successful high-pressure synthesis and structural refinement of Na2MgSiO4 allow us to consider this phase as a probable host for sodium in some locally metasomatized mantle areas.
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