PHASE ASSOCIATIONS AND PARTITIONING OF MINOR ELEMENTS UPON PARTIAL MELTING OF MODEL PYROLITE UNDER THE CONDITIONS OF THE TRANSITION ZONE AND LOWER MANTLE OF THE EARTH
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Partitioning of trace and rare-earth elements between mantle minerals and melts at high pressures and temperatures is of key importance for all geochemical models involving melting of the Earth's mantle. According to existing models (Harte, 2010), ringwoodite-ahrensite (Mg2SiO4–Fe2SiO4 with spinel structure) solid solution and majoritic garnet [(Ca,Mg,Fe)3Al2Si3O12–(Mg,Fe)4Si4O12)] (Akaogi, 2007) are the major rock-forming minerals in the deep transition zone (Ringwood, 1991). Bridgmanite (MgSiO3 with perovskite-type structure), calcium perovskite (CaSiO3 with perovskite-type structure), and ferropericlase ((Mg,Fe)O with NaCl-type structure) are the major rock-forming mineral phases in the lower mantle of the Earth. As is evident from previous experimental studies, trace and rare-earth elements in the lower mantle preferably distribute to calcium perovskite in relation to bridgmanite and ferropericlase (Corgne et al., 2003). Calcium perovskite is often enriched in LREE, wheras bridgmanite is depleted with them (Kaminsky, 2012). Most of minor elements are incompatible in bridgmanite; only Si, Mg, Sc, Zr, Lu and Hf are consistently compatible. Partition coefficients of REEs in bridgmanite increase from La (DLa = 0.01) to Lu (DLu up to ~1.5) (Liebske et al., 2005). 
Experiments at 21-24 GPa and 1200-2200°C were performed using a 2000 ton split-sphere press installed at the Ehime University (Matsuyama, Japan). Starting compositions were represented by the simplified composition of pyrolite (Ringwood, 1966). Agents of partial melting included (1) H2O in the composition of brucite Mg(OH)2 (2 wt % H2O), (2) mixture of carbonates (10 and 15 wt % of carbonate mixture). The carbonate composition was multicomponent: CaCO3, MgCO3, FeCO3, Na2CO3 (25 wt% of each), and corresponded to the carbonatite end-member of the carbonate–silicate matter of primary inclusions in natural diamonds (Schrauder, Navon, 1994). In each starting composition, a trace-element mixture was added in a weight ratio of 1/99. This mixture included La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Hf, Zr, Nb, Sc, Ta, Pb, Zn oxides, RbCl and Sr-, Ba-, and Li-carbonates and was prepared and homogenized by prolonged grinding in the presence of ethanol. 
Several parageneses were registered in experimental samples. In the carbonate-silicate system, the evidence for partial melting was observed at ≥1700°C. In the hydrous system, partial melting occurred at ≥1900°C. the following parageneses are typical of the carbonate-silicate system: fPer+L; L+fPer+Brd+CaPrv; fPer+Brd+ CaPrv+Carb. The samples produced in the hydrous system consisted of L+fPer+Brd+CaPrv; fPer+Brd+CaPrv. Our experiments substantiated the mechanisms isomorphism in the bridgmanite structure: Mg2+A + Si4+B = Al3+A + Al3+B  and 2Si4+B + O2-O = 2Al3+B + VO (Akaogi, 2007) with prevalence of the second scheme. Chromium and aluminum content decrease with increasing magnesium content in bridgmanite. 
We have found that in the hydrous system sodium preferably incorporates in ferropericlase, due to calcium perovskite. In addition, sodium content in ferropericlase increases with temperature. Aluminum content increases with increasing calcium content in calcium perovskite. Chromium content decreases with increasing magnesium content in ferropericlase. It is shown that bridgmanite and ferropericlase are depleted in LREE. Partition coefficients (CaPrv/L) of REEs in calcium perovskite decrease with temperature. The results obtained indicate that under the conditions of the Earth’s lower mantle, trace and rare-earth elements may be accumulated not only in the CaSiO3 perovskite (Ringwood et al., 1988), but in ferropericlase and bridgmanite as well.
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